62 research outputs found

    The potential of corticomuscular and intermuscular coherence for research on human motor control

    Get PDF
    In an experimental study on the changes in descending drive during muscle fatigue, Semmler et al. (2013) investigated inter-muscular (EMG–EMG) coherence in elbow muscles after eccentric exercise. They reported a broadband increase in coherence with fatigue in all elbow flexor muscle pairs and suggested that these changes reflect increased common oscillatory input to the elbow flexors. This interpretation was questioned in the Editorial by Heroux and Gandevia (2013), who noted that the mechanisms gener-ating the reported increase in coherence are unclear and that peripheral factor

    A dendritic mechanism for decoding traveling waves: Principles and applications to motor cortex

    Get PDF
    Traveling waves of neuronal oscillations have been observed in many cortical regions, including the motor and sensory cortex. Such waves are often modulated in a task-dependent fashion although their precise functional role remains a matter of debate. Here we conjecture that the cortex can utilize the direction and wavelength of traveling waves to encode information. We present a novel neural mechanism by which such information may be decoded by the spatial arrangement of receptors within the dendritic receptor field. In particular, we show how the density distributions of excitatory and inhibitory receptors can combine to act as a spatial filter of wave patterns. The proposed dendritic mechanism ensures that the neuron selectively responds to specific wave patterns, thus constituting a neural basis of pattern decoding. We validate this proposal in the descending motor system, where we model the large receptor fields of the pyramidal tract neurons — the principle outputs of the motor cortex — decoding motor commands encoded in the direction of traveling wave patterns in motor cortex. We use an existing model of field oscillations in motor cortex to investigate how the topology of the pyramidal cell receptor field acts to tune the cells responses to specific oscillatory wave patterns, even when those patterns are highly degraded. The model replicates key findings of the descending motor system during simple motor tasks, including variable interspike intervals and weak corticospinal coherence. By additionally showing how the nature of the wave patterns can be controlled by modulating the topology of local intra-cortical connections, we hence propose a novel integrated neuronal model of encoding and decoding motor commands

    Mapping dynamic social networks in real life using participants' own smartphones

    Get PDF
    AbstractInterpersonal relationships are vital for our daily functioning and wellbeing. Social networks may form the primary means by which environmental influences determine individual traits. Several studies have shown the influence of social networks on decision-making, behaviors and wellbeing. Smartphones have great potential for measuring social networks in a real world setting. Here we tested the feasibility of using people's own smartphones as a data collection platform for face-to-face interactions. We developed an application for iOS and Android to collect Bluetooth data and acquired one week of data from 14 participants in our organization. The Bluetooth scanning statistics were used to quantify the time-resolved connection strength between participants and define the weights of a dynamic social network. We used network metrics to quantify changes in network topology over time and non-negative matrix factorization to identify cliques or subgroups that reoccurred during the week. The scanning rate varied considerably between smartphones running Android and iOS and egocentric networks metrics were correlated with the scanning rate. The time courses of two identified subgroups matched with two meetings that took place that week. These findings demonstrate the feasibility of using participants' own smartphones to map social network, whilst identifying current limitations of using generic smartphones. The bias introduced by variations in scanning rate and missing data is an important limitation that needs to be addressed in future studies

    Neural dynamics of human motor control

    Get PDF
    Beek, P.J. [Promotor]Daffertshofer, A. [Copromotor

    The influence of visual information on multi-muscle control during quiet stance: a spectral analysis approach

    Get PDF
    Standing upright requires the coordination of neural drives to a large set of muscles involved in controlling human bipedal stance (i.e., postural muscles). The coordination may deteriorate in situations where standing is performed under more challenging circumstances, such as standing on a smaller base of support or not having adequate visual information. The present study investigates the role of common neural inputs in the organization of multi-muscle synergies and the effects of visual input disruption to this mechanism of control. We analyzed the strength and distribution of correlated neural inputs (measured by intermuscular coherence) to six postural muscles previously recognized as components of synergistic groups involved in the maintenance of the body's vertical positioning. Two experimental conditions were studied: quiet bipedal stance performed with opened eyes (OEs) and closed eyes (CEs). Nine participants stood quietly for 30 s while the activity of the soleus, biceps femoris, lumbar erector spinae, tibialis anterior, rectus femoris, and rectus abdominis muscles were recorded using surface electrodes. Intermuscular (EMG-EMG) coherence was estimated for 12 muscle pairs formed by these muscles, including pairs formed solely by either posterior, anterior, or mixed (one posterior and one anterior) muscles. Intermuscular coherence was only found to be significant for muscle pairs formed solely by either posterior or anterior muscles, and no significant coherence was found for mixed muscle pairs. Significant intermuscular coherence was only found within a distinct frequency interval bounded between 1 and 10 Hz when visual input was available (OEs trials). The strength of correlated neural inputs was similar across muscle pairs located in different joints but executing a similar function (pushing body either backward or forward) suggesting that synergistic postural groups are likely formed based on their functional role instead of their anatomical location. Absence of visual information caused a significant decrease in intermuscular coherence. These findings are consistent with the hypothesis that correlated neural inputs are a mechanism used by the CNS to assemble synergistic muscle groups. Further, this mechanism is affected by interruption of visual input

    Onset and transition of and recovery from adverse development:study methodology

    Get PDF
    AIM: Early intervention programs for first-episode psychosis have led to the awareness that the period before onset of a first episode is important in light of early intervention. This has induced a focus on the so-called 'at risk mental state' (ARMS). Individuals with ARMS are at increased risk for later psychotic disorder, but also for other psychiatric disorders as well as poor psychosocial functioning. Thus, adequate detection and treatment of ARMS is essential. METHODS: Since 2018, screening for and treatment of ARMS is recommended standard care in the Netherlands. Implementation is still ongoing. We initiated a naturalistic long-term cohort study of ARMS individuals, the onset and transition of and recovery from adverse development (OnTheROAD) study, with the aim to monitor course and outcome of symptoms and psychosocial functioning over time, as well as patterns of comorbidity and associations with factors of risk and resilience. To this end, participants complete a broad battery of instruments at baseline and yearly follow-up assessments up to 3 years. Outcome is defined in terms of symptom severity level, functioning and quality of life. In particular, we aim to investigate the impact of negative symptoms as part of the ARMS concept. Results from this study can aid in refining the existing ARMS criteria, understanding the developmental course of ARMS and investigating the hypothesized pluripotentiality in outcome of ARMS. New knowledge may inform the further development of specialized early interventions. RESULTS AND CONCLUSIONS: In this article, we describe the rationale, outline and set-up of OnTheROAD

    Anti-topoisomerase, but not anti-centromere B cell responses in systemic sclerosis display active, Ig-secreting cells associated with lung fibrosis

    Get PDF
    Objectives Almost all patients with systemic sclerosis (SSc) harbour autoantibodies. Anti-topoisomerase antibodies (ATA) and anti-centromere antibodies (ACA) are most prevalent and associate with distinct clinical phenotypes. B cell responses underlying these phenotypes are ill-defined. To understand how B cell autoreactivity and disease pathology connect, we determined phenotypic and functional characteristics of autoreactive B cells in ATA-positive and ACA-positive patients.Methods Levels and isotypes of autoantibodies secreted by ex vivo cultured peripheral blood mononuclear cells from patients with ATA-positive (n=22) and ACA-positive (n=20) SSc were determined. Antibody secreting cells (ASCs) were isolated by cell sorting and cultured separately. Correlations were studied between the degree of spontaneous autoantibody production and the presence and degree of interstitial lung disease (ILD).Results Circulating B cells secreting either ATA-immunoglobulin G (IgG) or ACA-IgG on stimulation was readily detectable in patients. The ATA response, but not the ACA response, showed additional secretion of autoreactive IgA. ATA-IgG and ATA-IgA were also secreted spontaneously. Additional cell sorting confirmed the presence of ATA-secreting plasmablasts. The degree of spontaneous ATA-secretion was higher in patients with ILD than in those without (pConclusion In contrast to ACA-positive patients, ATA-positive patients show signs of recent activation of the B cell response that hallmarks this disease. The degree of activation correlates with the presence and severity of ILD, the most deleterious disease manifestation. This could explain differential responsiveness to B cell depleting therapy. The abundant and spontaneous secretion of ATA-IgG and ATA-IgA may point toward a continuously activating trigger.</div

    Radiofrequency ablation versus hepatic resection for hepatocellular carcinoma within the Milan criteria – A comparative study

    Get PDF
    AbstractBackgroundTo compare the results of radiofrequency ablation (RFA) with hepatic resection in the treatment of hepatocellular carcinoma (HCC) within the Milan criteria.MethodsA nonrandomized comparative study was performed with 111 consecutive patients who underwent laparoscopic RFA (n = 31) or curative hepatic resection (n = 80) for HCC within Milan criteria.ResultsProcedure related complications were less often and severe after RFA than resection (3.2% vs. 25%). There was no significant difference in hospital mortality (0% vs. 3.8%). Hospital stay was significantly shorter in the RFA group than in the resection group (mean, 3.8 vs. 6.8 days). The 1-, 3-, and 5-year disease-free survival rates for the RFA group and the resection group were 76%, 40%, 40% and 76%, 60%, 60%, respectively. Disease-free survival was significantly lower in the RFA group than in the resection group. The corresponding 1-, 3-, and 5-year overall survival rates for the RFA group and the resection group were 100%, 92%, 84%, and 92%, 75%, 71%, respectively. The overall survival for RFA and resection were not significantly different.ConclusionsOur result showed comparable overall survival between RFA and surgery, although RFA was associated with a significantly higher tumor recurrence rate. RFA had the advantages over surgical resection in being less invasive and having lower morbidity
    • …
    corecore